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A simple and efficient method is presented to describe the

secondary structure of proteins in terms of orientational

distances between consecutive peptide planes and local helix

parameters. The method uses quaternion-based superposition

fits of the protein peptide planes in conjunction with Chasles’

theorem, which states that any rigid-body displacement can be

described by a screw motion. The helix parameters are derived

from the best superposition of consecutive peptide planes and

the ‘worst’ fit is used to define the orientational distance.

Applications are shown for standard secondary-structure

motifs of peptide chains for several proteins belonging to

different fold classes and for a description of structural

changes in lysozyme under hydrostatic pressure. In the latter

case, published reference data obtained by X-ray crystallo-

graphy and by structural NMR measurements are used.

Received 1 August 2005

Accepted 20 December 2005

1. Introduction

The determination and characterization of protein secondary

structure is a fundamental task in molecular biology, crystal-

lography and simulation studies. In many situations the

necessity arises to quantify particular structural changes of a

protein that arise from a change in its environment. The

influence of temperature or pressure on the fold of a protein is

a typical example. Standard motifs in protein secondary

structure are traditionally described in terms of two torsional

angles, ’ and  , per residue, which define for each C� atom the

rotation of the left and right peptide plane about the N—C�

and C�—C bond, respectively (Stryer, 1988). In the past,

various methods have been developed to determine

secondary-structure elements (Kabsch & Sander, 1983;

Richards & Kundrot, 1988; Frishman & Argos, 1995; Taylor,

2001) and to describe their geometry in more detail (Barlow &

Thornton, 1988; Sklenar et al., 1989; Thomas, 1994). A

rigourous mathematical description of protein secondary

structure can be obtained by applying the theory of screw

motions, in which the winding of the protein backbone is

described in terms of local helix parameters. The theory of

screw motions goes back to the mathematician M. Chasles

(Chasles, 1830, 1870) and a useful recent introduction can be

found in the book by Selig (1996). In a recent paper, Quine

uses screw-motion theory and constructs local helix para-

meters for a protein from the torsion angles ’ and  (Quine,

1999). An important step is the introduction of quaternions,

which can be related to the (’,  ) angles on one hand and to

the rotation/helix axis on the other.

In this article, we present an efficient method for the

characterization of protein secondary structure which is based

on quaternion superposition fits of consecutive peptide planes.

From the resulting quaternion parameters, we construct the



local helix geometry of the protein backbone and show that

the superposition method may also be used to define a scalar

measure for the orientational distance between consecutive

peptide planes. The latter allows distinction between all

common secondary-structure motifs, such as different helix

types and �-strands, with the exception of handedness.

In the following section the method is briefly explained and

applications are presented in x3. The first application concerns

an illustration for simple model structures, such as right- and

left-handed �-helices and �-strands. We show then how our

method works for proteins which fall into different fold classes

and finally discuss in more detail how it can be used to

quantify changes in the secondary structure of lysozyme which

are caused by external pressure. For this purpose, we use

published reference structures which have been obtained from

X-ray crystallography and from structural NMR measure-

ments. The essential results are summarized and discussed in

x4. In Appendix A, we recall the essential properties of

quaternions and give a short constructive proof of Chasles’

theorem, which demonstrates the usefulness of quaternion

calculus.

2. Method

As stated in x1, our method for the description of protein

secondary structure relies on quaternion-based superposition

fits of molecular structures. The method is well established and

we refer to articles by Kearsley (1989) and by Kneller (1991)

for details. Here, we utilize the fact that the quaternion

method not only yields the ‘best’ fit, from which local helix

parameters describing the winding of the protein backbone

can be constructed, but also the ‘worst’ fit, from which an

orientational distance measure can be derived.

2.1. Quaternion superposition fits

Suppose that {~rr�} and {~rr
0

�} are two sets of vectors describing

the positions of atoms representing equivalent molecular

structures A and B, respectively. Both structures contain the

same number of atoms and are somehow placed in space. A

rigid-body displacement A ! B can be defined as an opti-

mization problem, where structure A is fitted onto structure B

in a least-squares sense. In the case that both structures are

identical, the resulting fit error will be zero. One starts by

constructing the translation vector~tt = ~RRC0 �
~RRC connecting the

two centres of rotation, C and C0, which are to be chosen in the

same way for A and B, and computes the coordinate sets {x�}

and {x0�} containing the relative atomic positions to the

respective rotation centres. Here and in the following the

prime refers to the target structure B. The optimal rotation is

obtained by minimizing the target function

mðqÞ ¼
PN
�¼1

w�ðD � x� � x0�Þ
2

ð1Þ

with respect to a set of angular variables which parametrize

the orthogonal rotation matrix D. Each atom is assigned a

positive weight w�, with
P

� w� = 1. A convenient set of

angular variables are normalized (real) quaternion para-

meters, q = {q0, q1, q2, q3}, with q2
0 + q2

1 + q2
2 + q2

3 = 1. In this case

D takes the form (Altmann, 1986)

DðqÞ ¼

q2
0 þ q2

1 � q2
2 � q2

3 2ð�q0q3 þ q1q2Þ 2ðq0q2 þ q1q3Þ

2ðq0q3 þ q1q2Þ q2
0 þ q2

2 � q2
1 � q2

3 2ð�q0q1 þ q2q3Þ

2ð�q0q2 þ q1q3Þ 2ðq0q1 þ q2q3Þ q2
0 þ q2

3 � q2
1 � q2

2

2
64

3
75
ð2Þ

and describes a proper rotation with det(D) = +1. Using the

orthogonality of D, the target function m(q) can be written as

a quadratic form in the quaternion parameters,

mðqÞ ¼ qT
�M � q; ð3Þ

where q = (q0, q1, q2, q3)T is a column vector and M is a

positive semi-definite matrix. The superscript T denotes a

transposition. The matrix M has the form (Kearsley, 1989;

Kneller, 1991),

M ¼
PN
�¼1

w�
ðx� � x0�Þ

2 uT
�

u� P�

� �
ð4Þ;

where u� and P� are given by

u� ¼ x� ^ x0�; ð5Þ

P� ¼ x� � x
0T
� þ x0� � x

T
� : ð6Þ

The minimization of m(q) with respect to the quaternion

parameters must be performed with the side constraint

qT
�q = 1. Using the method of Lagrange multipliers, one is led

to the eigenvector problem

M � q ¼ �q: ð7Þ

Since m(q) � 0, the matrix M is positive semi-definite and

one obtains a set of four real eigenvalues, {�j}, with �j � 0

(j = 1, . . . , 4), and a set of corresponding orthonormal

eigenvectors, qj, with qT
j �qk = �jk. Here, �jk is the Kronecker

symbol. It follows from (3) and (7) that

mðqjÞ ¼ �j: ð8Þ

The eigenvalues are thus the residuals of the fit and can be

ordered such that

�1 � �2 <�3 � �4: ð9Þ

The quaternion corresponding to the smallest eigenvalue, �1,

is thus the solution for the optimal fit and the quaternion

parameters q1 describe the relative orientation of {x0�} with

respect to {x�}.

We note that one obtains two twofold-degenerate eigen-

values if the structures to be superposed are linear. In this case

one has (Kneller, 1991)

�a;b ¼
P
�

w�ðjx�j
2
þ jx0�j

2
� 2jx�jjx

0
�jÞ; ð10Þ

where a = 1, 2, b = 3, 4 and both the rotations leading to the

minimum and maximum distance are not uniquely deter-

mined. Any normalized linear combination of the two eigen-
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vectors associated with �a and �b, respectively, describes an

equivalent rotation.

The use of quaternion parameters in not only very conve-

nient for finding a rigid-body transformation between two sets

of coordinates, but the result can also be directly related to

conventional representations of rotations. Here, the following

relation is of importance:

q �
q0

qv

� �
¼

cosð’=2Þ

sinð’=2Þn

� �
: ð11Þ

From the scalar part of a quaternion, q0, one thus directly

obtains the rotation angle; the rotation axis can be extracted

from the vectorial part, qv. It should be noted that the trans-

formation ’ ! ’ + 2�, which leaves the rotation matrix

D(n, ’) invariant, leads to a global change in the sign of the

quaternion parameters. It can easily be verified that

q(n, ’ + 2�) = �q. The pair of quaternions {Q, �Q} is thus

mapped onto the same rotation matrix D(q).

2.2. Orientational distance

The eigenvalue describing the ‘worst’ superposition (�4

according to the ordering scheme; equation 9) can be used to

define an orientational distance between two molecular

structures via

�� ¼
M11

�4

� �1=2

: ð12Þ

Equation (4) shows that the matrix element M11 contains the

squared Euclidean distance between the vector sets {~xx�} and

{~xx
0

�} and therefore �� is the Euclidean distance normalized to

its maximum possible value. Consequently,

0 � �� � 1: ð13Þ

It is important to note that (12) yields a unique orientational

distance of two linear molecular structures whose relative

orientation has no unique description in terms of angular

variables. Supposing that jx 0�| = |x�| for � = 1, . . . , N, we see

from (10) that for linear rigid bodies �� = 0 in the parallel

configuration and �� = 1 in the antiparallel configuration. We

note here that �b, as given by (10), is a strict upper limit for the

Euclidean distance of two molecular structures in general

(Kneller, 2005).

2.3. Chasles’ theorem

Let r = (x, y, z)T be a column vector containing the co-

ordinates of a radius vector ~rr = OP
�!

of a point P in a rigid body,

where O is the origin of the coordinate system. An arbitrary

rigid-body displacement is described by a rotation about a

point C, which is not necessarily located inside the rigid body,

and a subsequent translation. Let RC be the coordinates of the

radius vector ~RRC = OC
�!

and let t be the coordinates of the

translation vector ~tt = CC0
�!

, where C0 is the centre of rotation

after the translation. The coordinates of P after a rigid-body

displacement are then given by

r0 ¼ RC þD � ðr� RCÞ þ t; ð14Þ

where D is an orthogonal 3 � 3 matrix. In the following, only

proper rotations with det(D) = +1 will be considered. If

n = (nx, ny, nz)T contains the components of the unit vector ~nn,

pointing in the direction of the rotation axis, and ’ is the angle

of rotation, the corresponding rotation matrix can be written

as

Dðn; ’Þ ¼ Pk þ cosð’ÞP? þ sinð’ÞN; ð15Þ

where Pk = n�nT and P? = 1� Pk are the projectors onto ~nn and

its complement, respectively, and N is the antisymmetric

matrix

N ¼

0 �nz ny

nz 0 �nx

�ny nx 0

0
@

1
A: ð16Þ

The theorem of Chasles states that one can find a reference

point X, whose radius vector ~RRx = OX
�!

has the coordinates Rx,

such that

r0 ¼ Rx þDðn; ’Þ � ðr� RxÞ þ �n: ð17Þ

This coordinate transformation describes a screw motion with

translation � parallel to the axis of rotation. For the

following considerations, we introduce the difference vector

~uu = ~RRx �
~RRc. Equating (14) and (17) and using the fact that n is

an eigenvector of D, one finds that the coordinates of ~uu satisfy

the following set of linear equations

ð1�DÞ � u ¼ t?: ð18Þ

Here, t? = P?�t. As shown in Appendix B, the above equation

has a linear manifold of solutions,

uð�Þ ¼ u? þ �n; � 2 R; ð19Þ

where u? is perpendicular to n and has the explicit form

u? ¼
1
2 ½t? þ cotð’=2Þn ^ t	: ð20Þ

In absolute coordinates, the axis of the screw motion is given

by

Rx ¼ RC þ u? þ �n; ð21Þ

and

R?x ¼ RC þ u? ð22Þ

contains the coordinates of the radius vector ~RR?x relating the

origin to the point X? on the helix axis which is closest to the

reference point C. In the following, X? will be referred to as

the centre of screw motion. The radius � of the corresponding

screw motion is given by the Euclidean length of ~uu?, since the

latter is the vector pointing from ~RRC to X?. Using (20) one

finds

� ¼
jt?j

2
½1þ cot2

ð’=2Þ	1=2: ð23Þ

It should be noted that � diverges if ’ is a multiple of 2�,

corresponding to pure translations, and if |t?| 6¼ 0.
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3. Applications

3.1. Screw-motion description of protein main chains

The method described above, which will be referred to as

ScrewFit in the following, is now applied to define the local

helical structure of polypeptides and proteins. The rigid bodies

are here the triangles formed by the atoms (O, C, N) in the

backbone of polypeptides (see Fig. 1) which define the so-

called peptide planes. Here, the C atoms are the centres of

rotation and the translation vectors are thus the position

differences between the C atoms in consecutive amino acids,

ti = RC(i+1)� RC(i). The quaternion parameters qi are obtained

from the fit of the (O, C, N) triangle of peptide bond i onto

that of peptide bond i + 1. From each set of quaternion

parameters the direction ~nn of the rotation axis and the rotation

angle ’ can be computed from (11).

The following parameters are used to define the local helix

structure of a polypeptide.

(i) The helix radius � defined in (23).

(ii) The number of amino acids per turn,

� ¼ ð2�=’Þ: ð24Þ

(iii) The pitch, which is defined as

p ¼ jR?x;iþ1 � R?x;ij�: ð25Þ

Here, ~RR?x;i is the radius vector pointing from the origin to the

centre X?i of the screw motion relating peptide plane i and

peptide plane i + 1.

(iv) The handedness, which is defined as the sign of the

projection of the translation vector ~tti onto the direction ~nni of

the local helix axis,

h ¼ signðnT
i � tiÞ: ð26Þ

(v) The straightness parameter � of the local helix axis. For

residue i the latter is defined as

�i ¼ lT
i � liþ1; ð27Þ

where

li ¼
R?x;iþ1 � R?x;i

jR?x;iþ1 � R?x;ij
: ð28Þ

(vi) The orientational distance between the peptide planes

(O, C, N) in residues i and i + 1, which is defined through (12).

3.2. Model structures

We first apply ScrewFit to well known model structures of

polypeptides which have been taken from the Image Library

of Biological Macromolecules in Jena (Institute of Molecular

Biotechnology, Jena; http://www.imb-jena.de/IMAGE.html).

Table 1 shows the corresponding local helix parameters which

have been defined in the previous section. All model peptides

are polyalanine molecules containing ten residues, except for

the extended conformation, which is represented by the

alanine tripeptide shown in Fig. 1. In all cases the N-terminus

is the starting point of the respective polypeptide chain. In the

context of our study all motifs are considered as helices, a

�-strand being simply a thin left-handed helix with two amino

acids per turn.

The parameters concerning the different secondary struc-

ture motifs shown in Table 1 may be compared with those

published in the study of Barlow & Thornton (1988). Here,

attention must be paid to the fact that the helix radius depends

research papers

Acta Cryst. (2006). D62, 302–311 Kneller & Calligari � Secondary structure in terms of screw motions 305

Figure 1
A tripeptide with two peptide bonds in the extended conformation, where
R represents unspecified side chains. The screw motion relating the
yellow triangles formed by the O, C, N atoms of the peptide planes defines
the local helix, which is schematically represented by the cylinder in
purple and the corresponding screw arrow. The radius of the cylinder
corresponds to the radius of the screw motion.

Table 1
Helix parameters for different model structures.

Here, � is the helix radius with the C atom of the peptide plane on the helix
surface, �C� is the corresponding radius if the C atom is replaced by the C�

atom, � is the number of residues per turn, h is the handedness and � the
straightness parameter. The latter equals 1 for all model structures, since none
is curved. The straightness parameter for the extended conformation cannot
be defined, since the model structure for the latter consists of only three
residues (see Fig. 1). Further explanations are given in the text.

Motif � (nm) �C� (nm) � Pitch (nm) h � ��

�-Helix (R) 0.171 0.227 3.62 0.556 + 1 0.582
�-Helix (L) 0.171 0.227 3.62 0.556 � 1 0.582
310-Helix 0.146 0.203 3.28 0.589 + 1 0.670
�-Helix 0.178 0.258 4.16 0.558 + 1 0.471
�-Strand 0.055 0.093 2.03 0.671 � 1 0.875
Extended 0.037 0.055 2.00 0.725 � 0.754



on the reference point which is chosen to lie on the helix

surface. In our case this is the C atom in the O–C–N peptide

plane. If the carbon C� atom is chosen instead, we find the

values given in the column with the header ‘�C� ’.

The parameters we find for the right-handed �-helix are

very close to those given by Barlow and Thornton, who

compare different standard definitions with average values

computed from a set of 291 helices in ‘real’ proteins. The

parameters listed in the above reference are in the intervals

0.23 � � � 0.24, 3.54 � � � 3.67 and 0.52 � p � 0.55,

respectively, using our notation and units (� and p in nano-

metres). In case of the 310-helix the spread of the parameters

given by Barlow and Thornton is 0.18� �� 0.20, 3.0� � � 3.2

and 0.58 � p � 0.60. Parameters for �-helices are not listed. It

should be noted that the orientational distance takes well

distinguishable values for the different secondary-structure

motifs, but left- and right-handed motifs cannot be distin-

guished by this parameter.

3.3. Proteins in different fold classes

In the following we will show the results of ScrewFit for

proteins which fall into the four main fold classes according to

the SCOP scheme (Murzin et al., 1995).

(i) Carbonmonoxy-myoglobin (PDB code 1a6g), which

belongs to the ‘all-�’ class.

(ii) The protease inhibitor ecotin (PDB code 1ecy), which

belongs to the ‘all-�’ class.

(iii) Triose phosphate isomerase from chicken muscle (PDB

code 1tim), which belongs to the ‘�/�’ class. Proteins falling

into this class consist mainly of parallel �-sheets separated by

�-helices.

(iv) Hen egg-white lysozyme (PDB code 193l), which falls

into the ‘� + �’ class. Proteins of this type contain mainly

antiparallel �-sheets and separated regions containing �-

helices.

The latter application is postponed to the next section,

where we consider the structural changes of lysozyme under

pressure. In this context the ScrewFit parameters will also be

discussed in more detail. Here, we give only an impression of

the results compared with DSSP.

Figs. 2, 3 and 4 show the comparison of the first three

proteins in the list given above. In each figure we give the local

orientational distance ��, the local helix radius � and the

straightness parameter �. All calculations have been

performed on the basis of the respective entries in the PDB.

The vertical stripes correspond to the secondary-structure

motifs found using the DSSP method of Kabsch and Sander,

which is based on hydrogen-bonding criteria and is widely

used for the determination of secondary-structure elements in

proteins (Kabsch & Sander, 1983). The colouring scheme

indicates �-helices in light green and �-strands in light blue.

It can be recognized that the ScrewFit method often leaves

some ambiguity concerning the boundaries of secondary-

structure elements. This is simply owing to the fact that it is

sensitive to deviations from ideal geometries. This effect is

particularly visible in the behaviour of the straightness para-

meter. Similar observations have been made by comparing the

method of Barlow & Thornton (1988) using DSSP.

3.4. Lysozyme under hydrostatic pressure

In the following, we apply our method to visualize the

structural changes in lysozyme arising from the application of

external pressure. For this purpose, we consider protein

structures which have been obtained from X-ray crystallo-

graphy and from NMR measurements. The X-ray structures

are taken from entries 193l and 3lym of the PDB, which
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Figure 2
ScrewFit description of the main chain of carbonmonoxy-myoglobin
(PDB code 1a6g; ‘all-�’ in the SCOP scheme). The vertical green stripes
indicate �-helices found by the DSSP method and the horizontal lines
indicate the reference values given in Table 1.

Figure 3
ScrewFit description of the main chain of the protease inhibitor ecotin
(PDB code 1ecy; ‘all-�’ in the SCOP scheme). The vertical blue stripes
indicate �-strands found by the DSSP method and the horizontal lines
indicate the reference values given in Table 1.



contain the atomic coordinates of hen egg-white lysozyme at

pressures of 105 and 108 Pa, respectively (Vaney et al., 1996;

Kundrot & Richards, 1987). The NMR structures are taken

from PDB entries 1gxv and 1gxx, corresponding to pressures

of 105 and 2 � 108 Pa, respectively (Refaee et al., 2003). Fig. 5

shows the backbone of lysozyme at 105 Pa (blue tube)

obtained from the crystal structure, together with the line

joining the centres of screw motion mapping each peptide

plane onto the consecutive one (red line). The centres of the

screw motions have been constructed according to (22).

Inspection by eye shows that that the red line passes right

through the geometrical centres of the helices.

Further details can be obtained from Figs. 6 and 7, which

show the same parameters as in Figs. 2, 3 and 4. In both cases

the curves corresponding to the structures under pressure are

given in red. The green and blue horizontal lines again

correspond to the reference values for an �-helix and a

�-strand, respectively, given in Table 1. Here, the vertical

stripes indicate the secondary structures according to the

PDBsum database. The latter uses the PROMOTIF program
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Figure 5
Minimal model for lysozyme at normal pressure. The red line joins the
centres of screw motions, X?, mapping each peptide plane onto the
following one.

Figure 6
ScrewFit description of lysozyme for crystallographic structures at
pressures of 105 (black line) and 108 Pa (red line) (PDB codes 193l and
3lym; Vaney et al., 1996; Kundrot & Richards, 1987). According to the
SCOP scheme, lysozyme falls into the ‘� + �’ class. The horizontal lines
show the reference values given in Table 1 and the vertical stripes indicate
the secondary structures according to the PDBsum database. Further
explanations are given in the text

Figure 4
ScrewFit description of the main chain of triose phosphate isomerase
(PDB code 1tim; ‘�/�’ in the SCOP scheme). The vertical green and blue
stripes indicate �-helices and �-strands found by the DSSP method,
respectively. The green and blue horizontal lines indicate the respective
reference values from Table 1.

Figure 7
As Fig. 6, but for NMR structures at 105 (black line) and 2 � 108 Pa (red
line) (Refaee et al., 2003).



for secondary-structure determination (Hutchinson, 2005),

which is itself based on the DSSP method. In addition to

�-helices, we also indicate 310-helices in dark green.

For the crystal structure entries 193l and 3lym, the PDBsum

database displays three long helices in the residue intervals

5–14, 25–36 and 89–99 and four short ones in the residue

intervals 80–84, 104–107, 109–114 and 120–123. In addition,

three short �-strands of two or three residues are displayed in

the regions 43–45, 51–53 and 58–59, respectively. We note here

that only the long helices are described in the work by Barlow

& Thornton (1988). Concerning the NMR structures, the

PDBsum database lists again the three long helices (5–14,

25–36 and 89–98), but only two short ones (80–84 and 109–

114). In contrast, the short �-strands are displayed at almost

the same positions as in the crystal structures (44–46, 50–53

and 58–59). As for the crystal structures, the structural motifs

are found at identical positions for both pressures.

Looking first at Fig. 6, which displays the parameters

corresponding to the crystal structures, shows that the orien-

tational distance is a good measure for the rapid localization

of secondary-structure elements in the amino-acid sequence of

a protein. For the moment, we will only discuss the structure at

ambient pressure. The analysis of the helix radius and the

straightness gives more detailed information. The three long

helices and also the three short �-strands are easily localized.

We find that the first helix (5–14) is straight only in the region

5–11. Towards the C-terminus the straightness drops consid-

erably and the orientational distance rises. The helix radius

stays approximately constant up to about residue 15. We find

that the second helix (25–36) is also deformed towards its

C-terminus, but here the orientational distances stays more or

less constant, whereas the helix radius and the straightness

change considerably. We consider this helix to be straight in

the range 25–32. Similar observations can be made for the

third long helix, which we find to be straight in the range

89–96. We note here that Barlow and Thornton consider the

first of the above helices as ‘irregular’ and the others as

‘curved’; however, they use different criteria. Concerning the

shorter helices, which are not considered helices by Barlow

and Thornton, we confirm less well defined helices in the

ranges 80–84, 104–107, 119–123 and 109–114. According to the

orientational distance, the first three are 310-helices. As for the

�-strands, our analysis would confirm the short strand in the

range 58–59, but yield longer strands in the regions 42–46 and

50–53. It is worthwhile mentioning that the straightness

parameter indicates hairpin turns between the �-strands,

leading to antiparallel �-sheets.

Applying ScrewFit to the NMR structure of lysozyme at

ambient pressure yields the following results: the three long

helices indicated by PDBsum are retrieved and, using the

orientational distance as a criterion, we confirm less well

defined helices in the ranges 80–84 (310-helix) and 109–114

(�-helix). According to our analysis, the first �-strand is longer

than that displayed in the PDBsum database (approximately

41–45).

Let us now look at the changes in secondary structure of

lysozyme arising from the exertion of an external pressure. We

start with the analysis of the crystallographic data of Kundrot

& Richards (1987). The black line in Fig. 8 shows that the

structural change obtained from the crystal structures is

localized at residue 72. All parameters show a change in the
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Figure 8
Differences between the parameters shown in Figs. 6 and 7 (X-ray
crystallography = black line, NMR = magenta line).

Figure 9
Change in straightness between the crystallographic structure of
lysozyme at 108 and 105 Pa. The colouring scheme is chosen such that
blue, green and red correspond to +2 (maximum positive change), 0 and
�2 (maximum negative change), respectively.



same place. Fig. 9 shows the change in the straightness of the

crystal structure of lysozyme in a tube representation, using a

colouring scheme in which red corresponds to a negative

change, green to no change and blue to a positive change. In

their study, Kundrot and Richards perform a difference

distance matrix analysis of the structural changes and report

that the smallest changes are seen in helix 2 (25–36) and in the

loop and �-sheet region 42–60, whereas a larger structural

change is seen in region 61–87, which appears to expand. We

note here that Kundrot and Richards call this region a ‘loop

region’, not counting the short 310-helix 80–84. This observa-

tion is coherent with our observations, which show in parti-

cular a strong rise of the local helix radius at residue 72,

corresponding to a swelling of the corresponding loop region.

The corresponding analysis for the NMR structures is less

clear (see Fig. 7, magenta lines). Here, the orientational

distance and the helix radius do not exhibit significant changes,

whereas the straightness shows a strong decrease at residue 60,

which is located at the very beginning of the long loop in the

residue range 60–80. Refaee et al. (2003) report the most

extensive deformations in the loop and what they call a

‘�-sheet domain’ (40–88), which is certainly in agreement with

a very localized change in secondary structure at residue 60.

However, we do not observe the considerable changes in the

hairpin turns 47–49 and 54–57 seen by Refaee and coworkers.

Fig. 10 shows the change in straightness for the NMR structure

of lysozyme in a tube plot in which the same colouring scheme

is used as in Fig. 9.

4. Conclusion

We have presented a simple method, ScrewFit, for the char-

acterization of protein secondary structure that uses

quaternion-based superposition fits of consecutive peptide

planes in the backbone. The combined use of the quaternion

fit method and Chasles’ theorem allows the expression of

protein secondary structure in terms of local helix parameters.

The superposition method yields also an orientational

distance measure for consecutive peptide planes. The latter is

obtained from the ‘worst’ possible quaternion fit and yields a

simple measure for the rapid localization of secondary-struc-

ture elements along the protein backbone. The analysis of

standard motifs of protein secondary structure and of proteins

belonging to different fold classes showed that all common

motifs are well discriminated by the orientational distance

measure and that the straightness parameter and the helix

diameter are useful to characterize non-ideal secondary-

structure elements, keeping a minimal set of parameters.

Using ScrewFit to study conformational changes in lyso-

zyme arising from application of external pressure revealed

different localized changes in the loop regions. The structural

changes extracted by difference distance matrix analysis from

the crystallographic data could be confirmed, however, giving

a more precise description of these changes. Concerning the

NMR structures, we find the essential conformational changes

in a different position than the authors of the reference article,

although both results agree in so far as the changes are found

in the same region. Prior to these analyses, we tested that the

localization of the essential secondary-structural elements

found by crystallography and NMR is confirmed.

ScrewFit allows the pinpointing of secondary-structure

changes precisely, which is more difficult to achieve by the

standard analysis of positional differences. The reason is that

the latter might indicate important structural differences in a

large region, although the corresponding position differences

are induced by one single localized change in the winding of

the protein backbone. A point which should also be

mentioned is the numerical efficiency of the quaternion-based

superposition algorithm we use as a basis of our method. The

superposition of two molecular structures can be performed in

a few milliseconds (Kneller, 1991) and this fact has been

exploited in many studies of rigid-body motions in molecular

systems using the molecular-dynamics analysis package

nMoldyn (Kneller et al., 1995; Rog et al., 2003). Using the

method presented in this article, the characterization of the

secondary structure of a protein can be performed in about 1 s

on a normal PC and this efficiency could for example be

used in database-oriented applications and for analyses of

molecular-dynamics trajectories of proteins. In this context it

is important to note that the protein backbone can be

completely reconstructed from the helix parameters defined in

this article. This is an interesting aspect for homology

modelling. Another useful application could be the char-

acterization of structural variability in different structural
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Figure 10
Change in straightness between the NMR structure of lysozyme at
2 � 108 and 105 Pa. The colouring scheme is the same as in Fig. 9.



models which are used to construct protein three-dimensional

structures from NMR distance data.

APPENDIX A
Quaternions

Quaternions are hypercomplex numbers which are composed

by linear superposition of one real unit element 1 and three

imaginary unit elements I, J , K. The latter satisfy the non-

commutative algebra I 2 = J 2 = K2 = �1 and IJ = �JI = K

(cycl.). An arbitrary quaternion Q is written as Q = q01 + q1I

+ q2J + q3K, where qj 2 R (j = 0, . . . , 3). The component q0 is

called the scalar component and {q1, q2, q3} are the vectorial

components. It is useful to introduce the column vector

qv = (q1, q2, q3)T comprising the three vectorial components of

a quaternion. Analogously to complex numbers, the length of

a quaternion is defined as ||Q|| = (q2
0 + q2

1 + q2
2 + q2

3)1/2 and its

conjugate is given by Q* = q01 � q1I � q2J � q3K.

Let A and B be quaternions with components {a0, a1, a2, a3}

and {b0, b1, b2, b3}, respectively. The components of C =A
 B

are obtained by cj = aj 
 bj (j = 0, . . . , 3) and from the algebra

of the imaginary elements one finds that the components of

the product C = AB are given by

c0

cv

� �
¼

a0b0 � aT
v � bv

a0bv þ b0av þ av ^ bv

� �
;

where ‘^’ denotes a vector product. In generalAB 6¼ BA. The

inverse of a quaternion A is defined as

A
�1
¼
A�

kAk
2 :

Owing to the non-commutative algebra of quaternions, in

general A
�1
B 6¼ BA

�1
.

Similarly to complex numbers of unit length, which repre-

sent rotations in the plane, normalized quaternions represent

rotations in space. Let r = (x, y, z)T, a column vector

comprising the components of a radius vector ~rr, let R = xI +

yJ + zK be the corresponding spatial quaternion and letQ be

a normalized quaternion with ||Q|| = 1. It is found that the

scalar component of R0 = QRQ� also vanishes and that the

vectorial components of R0 are given by

r0 ¼ D � r;

where D represents the rotation matrix (2). The bilinear

transformation R0 = QRQ� thus represents a rotation in

space.

APPENDIX B
Helix parameters in Chasles’ theorem

Chasles’ theorem can easily be proven using quaternion

algebra. For this purpose we start from (18) and introduce the

spatial quaternions U and T ?, representing, respectively, the

column vectors u and t?. Expressed in quaternions, (18)

becomes

U �QUQ
�
¼ T ?:

Multiplication with Q from the right and using the fact that

Q
�
Q = 1 yields

UQ �QU ¼ T ?Q:

Using the multiplication rule for quaternions, the above

equation can be expressed in the form

�uT � qv

qouþ u ^ qv

� �
�

�qT
v � u

qouþ qv ^ u

� �
¼

�t? � qv

q0t? þ t? ^ qv

� �
:

Here, we can make use of relation (11),

q0

qv

� �
¼

cosð’=2Þ

sinð’=2Þn

� �
;

from which we conclude that t?�qv = 0, since t? ? n. We are

thus left with the vector equation

0

2u ^ qv

� �
¼

0

q0t? þ t? ^ qv

� �
;

which can be reduced to

n ^ u ¼ 1
2 ½� cotð’=2Þt? þ n ^ t?	 ð29Þ

if ’ 6¼ 2k� (k 2 Z). Now one can apply on both sides

a vectorial multiplication with n, using the fact that

n^ (n^ a) =�a? for an arbitrary column vector a. This yields

u? ¼
1
2 ½t? þ cotð’=2Þn ^ t	;

if one uses that n ^ (n ^ t?) = �t? and that n ^ t? = n ^ t.

Relation (20) is thus proven. The general solution of (29)

obviously has the form

uð�Þ ¼ u? þ �n; � 2 R;

which shows that u?(�) is the solution of minimum length.

All figures containing molecular graphics were generated

using the VMD code for molecular-dynamics simulation and

visualization of biomolecules (Humphrey et al., 1996). The

screw-motion calculations were performed with modules from

the MMTK package (Hinsen, 2000).
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